Future University In Egypt (FUE)
Future University is one of most promising private universities in Egypt. Through excellence in teaching, research and service, Future University strives to provide a comprehensive, high-quality education that prepares our graduates to be future leaders.
mainLogo
Altagamoa Al Khames, Main centre of town, end of 90th Street
New Cairo
Egypt

Amal Emad

Basic information

Name : Amal Emad
Title: Professor
Google Schoolar Link
Personal Info: Dr. Amal Ali, Professor of Microbiology; Head of Microbiology & Immunology Department; PhD. of Phramaceutical Microbiology, Cairo University; M.Sc. of Pharmaceutical Microbiology, Cairo University; BSc of Pharmaceutical sciences, Cairo University. View More...

Education

Certificate Major University Year
PhD Pharmaceutical Microbiology Cairo University 2006
Masters Pharmaceutical Microbiology Cairo University 2002
Bachelor Pharmaceutical Sciences Cairo University 1991

Researches /Publications

Basil Essential Oil and its Nanoemulsion Mitigate Non Alcoholic Steatohepatitis in Rat Model with Special Reference to Gut Microbiota - 01/0

Amal Emadeldin Ali Mohamed

Sahar Y. Al-Okbi, Magdy A. Amin, Amr E. Edris, Osama M. Sharaf, Hoda B Mabrok, and Asmaa A. Ramadan

01/07/2020

Download PDF
Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa - 01/0

Amal Emadeldin Ali Mohamed

01/06/2019

Background: Quorum quenching, the interference of a Quorum sensing (QS) system that contributes to the pathogenesis through triggering the production of various virulence determinants, is among the newly suggested antivirulence strategies. Purpose: This study aimed at screening of N-Acyl homoserine lactonase activity from local bacterial isolate, and investigating its effect on Pseudomonas aeruginosa (P. aeruginosa) virulence and biofilm formation. Materials and methods: Soil bacteria were screened for aiiA gene coding for lactonase enzyme by Polymerase Chain reaction and sequencing of aiiA gene homologs. Lactonase activity and spectrum were assessed in the cell-free lysate by well diffusion assay using Agrobacterium tumafaciens KYC55. A bacterial isolate showing the highest N-acyl-homoserine lactones degradation percentage was identified by gene amplification and sequencing of the 16S rRNA gene and its aiiA gene homolog. High performance liquid chromatography was used to confirm N-acyl-homoserine lactone degradation. The effect of cell-free lysate on the biofilm formation ability and cytotoxicity of P. aeruginosa PAO1 and P. aeruginosa clinical isolates from different clinical sources were assessed by static microtiter plate and viability assay, respectively Results: Lactonase gene and activity were identified in three Bacillus spp. isolates. They showed broad catalytic activities against tested N-acyl-homoserine lactones. However, The lactonase activity in the cell- free lysate of isolate 30b showed the highest significant degradation percentage on all tested signals; N-butanoyl-L-homoserine lactone (71%), N-hexanoyl-l-homoserine lactone (100%), N-decanoyl-homoserine lactone (100%), N-(3-oxohexanoyl)-L-homoserine lactone (37.5%), N-(oxodecanoyl)-L-homoserine lactone (100%), and N-(3-oxododecanoyl)-L-homoserine lactone (100%). Alignment of the amino acid sequences of AiiA protein of isolate 30b showed 96% identity with Bacillus cereus (B. cereus) homologous lactonases in the GenBank database, and the isolate was designated as B. cereus isolate 30b. Cell-free lysate of B. cereus isolate 30b reduced biofilm formation significantly in 93% of P. aeruginosa isolates. The highest mean percentage of reduction in the biofilm was 86%. Moreover, the viability percentage of human lung carcinoma A549 cells infected by P. aeruginosa and treated with cell-free lysate of B. cereus isolate 30b increased up to 15%. Conclusion: The results of this study highlight the potential of lactonases as a promising strategy to combat Pseudomonas aeruginosa virulence.

Download PDF
Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota - 01/0

Amal Emadeldin Ali Mohamed

Abdelgawad M. Hashem , Ramy K. Aziz

01/04/2019

The gut microbiota enriches the human gene pool and contributes to xenobiotic metabolism. Microbial azoreductases modulate the reduction of azo-bonds, activating produgs and azo polymer-coated dosage forms, or degrading food additives. Here, we aimed to screen the healthy human gut microbiota for food colorant-reducing activity and to characterize factors modulating it. Four representative isolates from screened fecal samples were identified as E. coli (AZO-Ec), E. faecalis (AZO-Ef), E. avium (AZO-Ev) and B. cereus (AZO-Bc). Both AZO-Ef and AZO-Ev decolorized amaranth aerobically and microaerophilically while AZO-Ec and AZO-Bc had higher aerobic reduction rates. The isolates varied in their activities against different dyes, and the azo-reduction activity mostly followed zero-order reaction kinetics, with a few exceptions. Additionally, the isolates had different pH dependence, e.g., AZO-Ec was not affected by pH variation while AZO-Bc exhibited variable degradation kinetics at different pH levels. Cell-free extracts showed NADH-dependent enzymatic activities 14–19 times higher than extracellular fractions. FMN did not affect the reducing activity of AZO-Ef cell-free extract, whereas AZO-Ec, AZO-Ev and AZO-Bc had significantly higher reduction rates in its presence (P values = 0.02, 0.0001 and 0.02, respectively). Using Degenerate primers allowed the amplification of azoreductase genes, whose sequences were 98–99% similar to genes encoding FMN-dependent-NADH azoreductases.

Download PDF
Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155 - 01/0

Amal Emadeldin Ali Mohamed

Rasha A. Hashem, Reham Samir, Tamer M. Essam, Magdy A. Amin

01/05/2018

Azo dyes are complex derivatives of diazene used in food and textile manufacture. They are highly recalcitrant compounds, and account for severe environmental and health problems. Different strains of Pseudomonas species were isolated from textile wastewater effluents. The bioconversion of Remazol black B (a commonly used water soluble dye) by Pseudomonas aeruginosa was observed in static conditions. The bio-decolorization process was optimized by a multi factorial Plackett–Burman experimental design. Decolorization of 200 mg L−1 reached 100% in 32 h. Interestingly, the presence of yeast extract, magnesium and iron in the culture media, highly accelerated the rate of decolorization. Moreover, one of our isolates, P. aeruginosa KY284155, was kept high degradation rates at high pH (pH = 9), which represents the pH of most textile wastewater effluents, and was able to tolerate high concentration of dye up to 500 mg L−1. In bacteria, azo-dye degradation is often initiated by reductive azo compound cleavage catalyzed by azo-reductases. Three genes encoding azo-reductases, paazoR1, paazoR2 and paazoR3, could be identified in the genome of the isolated P. aeruginosa stain (B1). Bioinformatics analyses of the paazoR1, paazoR2 and paazoR3 genes reveal their prevalence and conservation in other P. aeruginosa strains. Chemical oxygen demand dramatically decreased and phyto-detoxification of the azo dye was accomplished by photocatalytic post treatment of the biodegradation products. We suggest applying combined biological photocatalytic post treatment for azo dyes on large scale, for effective, cheap decolorization and detoxification of azo-dyes, rendering them safe enough to be discharged in the environment.

Download PDF
Optimization of cellulase production by halobacillus sp. QLS 31 Isolated from lake qarun, Egypt. - 01/0

Amal Emadeldin Ali Mohamed

Ahmed H. Korany, Tamer M. Essam, Salwa A. Megahed

01/09/2017

A halophilic cellulase-producing bacterium was isolated from a sediment sample collected from Lake Qarun (Fayoum Province, Egypt). Molecular identification based on 16S rDNA amplification and sequencing revealed 99% homology with Halobacillus sp. and hence was designated as Halobacillus sp. QLS 31. Medium composition and culture conditions were optimized for enhancing the production of cellulase enzyme using the Plackett-Burman statistical design. Ten variables were evaluated for their influence on cellulase production. Carboxymethyl cellulose (CMC), zinc sulfate (ZnSO4), and inoculum size were found to exert a significant effect on cellulase productivity by Halobacillus sp. QLS 31. The maximum specific activity of cellulase enzyme was 48.08 U/mg. Following the predicted conditions, a 7.5-fold increase in cellulase specific activity (175.47 U/mg) was achieved compared to the basal medium (23.19 U/mg) under the following optimized conditions: temperature (30 °C), fermentation time (2 days ), pH value (9), CMC concentration (1%), inoculum size (1%), yeast extract concentration (0.1%), ammonium sulfate ((NH3)2SO4) concentration (0.1%), sodium chloride (NaCl) concentration (20%), and metal inducers: ZnSO4 (0.1%) and Ca/Mg ratio (0.01%). Thus, the results of this study provide an important basis for more efficient, cheap industrial cellulase production from halophilic Halobacillus sp. QLS 31.

Download PDF
Direct detection of Burkholderia cepacia in susceptible pharmaceutical products using seminested PCR - 01/0

Amal Emadeldin Ali Mohamed

Essam TM, Amin MA

01/01/2016

Burkholderia cepaciahas recently received a considerable attention as one of the major risks in susceptible pharmaceutical products. This microorganism can easily propagate and cause vast and severe contamination, especially to the water supplies for pharmaceutical companies. Moreover, it proliferates within the products and can cause severe infections for humans. Therefore, fast and sensitive detection of these bacteria is of a great demand. The present study introduces improved application of a polymerase chain reaction assay with relatively high sensitivity and specificity for the direct detection ofB. cepaciafrom the aqueous pharmaceutical products. A semi-nested polymerase chain reaction approach using the primer set BCR1/BCR2 followed by BCR1/Mr yielding a 465 bp fragment of the recA gene was applied and tested using both crude lysate from isolated colonies and DNA directly extracted from artificially prepared and spiked reference syrup. The polymerase chain reaction assay showed no interference with other bacterial reference and environmental strains tested, includingStaphylococcus aureusATCC® 6538,Pseudomonas aeruginosaATCC® 9027,Escherichia coliATCC® 8739,Salmonella abonyNCTC® 6017,Bacillus subtilisATCC® 6633,Micrococcus luteus, Staphylococcus warneri, Pseudomonas fluorescens, Pseudomonas putida, andRalstonia pickettii Moreover, this semi-nested assay showed a detection limit of around 10 colony-forming units per sample and could detectB. cepaciastrains isolated from a municipal pre-treated potable water tank. Comparing the results for detection ofB. cepaciain 100 randomly collected commercial syrup preparations using both conventional standard method and polymerase chain reaction assay revealed thatB. cepaciawas detected in two samples using polymerase chain reaction assay while all samples showed negative results by conventional culturing and biochemical methods. These results highlight the advantage of using this polymerase chain reaction assay to detectB. cepaciain contaminated pharmaceutical products and even water for pharmaceutical purposes, without the need of culturing or pre-enrichment, where it may give false-negative results and may be misidentified when biochemically tested.

Download PDF
Utilization of crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa - 01/0

Amal Emadeldin Ali Mohamed

Walaa A. Eraqi, Aymen S. Yassin, Amal E. Ali, and Magdy A. Amin

01/01/2016

Download PDF
Cerastes cerastes and Vipera lebetina Snake Venoms Apoptotic – Stimulating Activity to Human Breast Cancer Cells and Related Gene Modulation - 01/0

Amal Emadeldin Ali Mohamed

Shebl RI, Mohamed AF, Ali AE, Amin MA

01/04/2012

Download PDF

Follow us on

Visit the Faculty

ADS